Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence.
نویسندگان
چکیده
Pulse-chase experiments with [(3)H]tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a (3)H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi [(3)H]acylprotein and [(3)H]palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme ("34K") from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. Phosphate ions and, to a lesser extent, organic alcohols stimulated the rate of acyl-protein cleavage. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.
منابع مشابه
Thematic review series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis.
Phospholipid biosynthesis is a vital facet of bacterial physiology that begins with the synthesis of the fatty acids by a soluble type II fatty acid synthase. The bacterial glycerol-phosphate acyltransferases utilize the completed fatty acid chains to form the first membrane phospholipid and thus play a critical role in the regulation of membrane biogenesis. The first bacterial acyltransferase ...
متن کاملEnoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes.
Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phe...
متن کاملRalstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III
Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two form...
متن کاملDevelopment of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis.
Tuberculosis (TB) ranks second, next to AIDS making it most formidable disease if the present age. One of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, InhA (enoyl acyl carrier protein reductase) has been authenticated as an effective target for anti-mycobacterial drug development. In the current work, we have developed novel derivatives of 1,2,4-triazole-5-...
متن کاملAcyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae.
Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 18 شماره
صفحات -
تاریخ انتشار 1985